Effects of Adenosine on the Sleep-Wake Cycle
PDF
Cite
Share
Request
Review
P: 190-198
September 2022

Effects of Adenosine on the Sleep-Wake Cycle

J Turk Sleep Med 2022;9(3):190-198
1. Hacettepe Üniversitesi Tıp Fakültesi, Fizyoloji Anabilim Dalı, Ankara, Türkiye
2. Serbest Hekim, Türkiye
No information available.
No information available
Received Date: 03.02.2022
Accepted Date: 23.05.2022
Publish Date: 05.09.2022
PDF
Cite
Share
Request

ABSTRACT

Sleep and wakefulness are multifactorial, complex and well-regulated physiological processes that occur in all living things. Environmental and genetic factors that affect sleep and wakefulness can change the cycle determined by the circadian rhythm and the duration and intensity of daily brain activity. Considering the necessity of good sleep for health, it is clear that defining the factors that regulate the spontaneous sleep-wake cycle is important for the prevention, diagnosis and treatment of many sleep disorders. The facts that the extracellular concentration of adenosine which is defined as an endogenous sleep factor increases during long-term wakefulness, especially in the cortex and basal forebrain, and decreases during sleep, and in addition, caffeine, which is frequently consumed in daily life, acts via this molecule, indicate that it is a molecule that should be considered in the homeostasis of sleep. In this review, studies examining the regulation of the sequential sleep-wake cycle and the role of adenosine in this regulation are summarized.

Keywords:
Adenosine, circadian rhythm, sleep and wakefulness, caffeine

References

1
Balkancı ZD, Sevgili AM. Biyolojik Ritimler ve Anestezi. Anestezi Dergisi 2005;13:223-36.
2
Chassard D, Allaouchiche B, Boselli E. Timing is everything: the pendulum swings on. Anesthesiology 2005;103:454-6.
3
Moore RY. Suprachiasmatic nucleus in sleep-wake regulation. Sleep Med 2007;8(Suppl 3):27-33.
4
Şahin L, Aşçıoğlu M. Uyku ve Uykunun Düzenlenmesi. Sağlık Bilimleri Dergisi 2013;22:93-8.
5
Kandel ER, Schwartz JH, Jessell TM, Siegelbaum SA, Hudspeth AJ. Sleep and Dreaming. In: Principles Of Neural Science [Internet]. The McGraw Hill Components, 2013;1140-58.
6
Purves D, Augustine GJ, Fitzpatrick D, Hall WC, LaManita A-S, White LE. Sleep and Wakefulness. In: Purves D, Platt ML (eds). Neuroscience. 5th ed. Sundeland, Massachusetts U.S.A.: Sinauer Associates, Inc; 2012;625-46.
7
Borbély AA, Daan S, Wirz-Justice A, Deboer T. The two-process model of sleep regulation: a reappraisal. J Sleep Res 2016;25:131-43.
8
Porkka-Heiskanen T. Sleep regulatory factors. Arch Ital Biol 2014;152:57-65.
9
Bjorness TE, Greene RW. Adenosine and Sleep. Curr Neuropharmacol 2009;7:238-45.
10
Bear MF, W. CB, Paradiso MA. Brain Rhtyms and Sleep. In: Bear MF, W. CB, Paradiso MA (eds). Neuroscience Exploring The Brain. 4th ed. China: Wolters Kluwer, 2016;645-83.
11
Landolt HP. Sleep homeostasis: a role for adenosine in humans? Biochem Pharmacol 2008;75:2070-9.
12
Kryger M, Roth T, Dement WC. Normal Human Slleep: An Overview. In: Kryger M, Roth T, Dement WC (eds). Principles and Practice of Sleep Medicine China: Elsevier, 2017.
13
Iber C, Ancoli-Israel S, Chesson A, Quan SF. The AASM Manual for the Scoring of Sleep and Associated Events: Rules, Terminology and Technical Specifications 1ed. Westchester, Illionis: American Academy of Sleep Medicine; 2007.
14
Demir A, Ursavaş A, Aslan AT, Gülnay B, Çiftçi B, Çuhadaroğlu Ç, et al. Türk Toraks Derneği Obstrüktif Uyku Apne Sendromu Tanı ve Tedavi Uzlaşı Raporu. İstanbul; 2012.
15
Gvilia I. Underlying brain mechanisms that regulate sleep-wakefulness cycles. Int Rev Neurobiol 2010;93:1-21.
16
Schwartz JR, Roth T. Neurophysiology of sleep and wakefulness: basic science and clinical implications. Curr Neuropharmacol 2008;6:367-78.
17
Inutsuka A, Yamanaka A. The physiological role of orexin/hypocretin neurons in the regulation of sleep/wakefulness and neuroendocrine functions. Front Endocrinol (Lausanne) 2013;4:18.
18
Porkka-Heiskanen T, Kalinchuk AV. Adenosine, energy metabolism and sleep homeostasis. Sleep Med Rev 2011;15:123-35.
19
Saper CB, Scammell TE, Lu J. Hypothalamic regulation of sleep and circadian rhythms. Nature 2005;437:1257-63.
20
Han KS, Kim L, Shim I. Stress and sleep disorder. Exp Neurobiol 2012;21:141-50.
21
Szymusiak R, McGinty D. Hypothalamic regulation of sleep and arousal. Ann N Y Acad Sci 2008;1129:275-86.
22
Lu J, Greco MA, Shiromani P, Saper CB. Effect of lesions of the ventrolateral preoptic nucleus on NREM and REM sleep. J Neurosci 2000;20:3830-42.
23
Brown RE, Basheer R, McKenna JT, Strecker RE, McCarley RW. Control of sleep and wakefulness. Physiol Rev 2012;92:1087-187.
24
Anaclet C, Ferrari L, Arrigoni E, Bass CE, Saper CB, Lu J, Fuller PM. The GABAergic parafacial zone is a medullary slow wave sleep-promoting center. Nat Neurosci 2014;17:1217-24.
25
Drury AN, Szent-Györgyi A. The physiological activity of adenine compounds with especial reference to their action upon the mammalian heart. J Physiol 1929;68:213-37.
26
Huang ZL, Zhang Z, Qu WM. Roles of adenosine and its receptors in sleep-wake regulation. Int Rev Neurobiol 2014;119:349-71.
27
Holst SC, Landolt H-P. Sleep Homeostasis, Metabolism, and Adenosine. Current Sleep Medicine Reports 2015;1:27-37.
28
Borea PA, Gessi S, Merighi S, Varani K. Adenosine as a Multi-Signalling Guardian Angel in Human Diseases: When, Where and How Does it Exert its Protective Effects? Trends Pharmacol Sci 2016;37:419-34.
29
Kayir H, Uzbay T. Santral Adenozinerjik Sistem ve Klinik Önemi. Klinik Psikofarmakoloji Bülteni 2004;14:159-67.
30
Latini S, Pedata F. Adenosine in the central nervous system: release mechanisms and extracellular concentrations. J Neurochem 2001;79:463-84.
31
Chen JF, Eltzschig HK, Fredholm BB. Adenosine receptors as drug targets--what are the challenges? Nat Rev Drug Discov 2013;12:265-86.
32
Podgorska M, Kocbuch K, Pawelczyk T. Recent advances in studies on biochemical and structural properties of equilibrative and concentrative nucleoside transporters. Acta Biochim Pol 2005;52:749-58.
33
Dunwiddie TV, Masino SA. The role and regulation of adenosine in the central nervous system. Annu Rev Neurosci 2001;24:31-55.
34
Lloyd HG, Fredholm BB. Involvement of adenosine deaminase and adenosine kinase in regulating extracellular adenosine concentration in rat hippocampal slices. Neurochem Int 1995;26:387-95.
35
Schulte G, Fredholm BB. Signalling from adenosine receptors to mitogen-activated protein kinases. Cell Signal 2003;15:813-27.
36
Antonioli L, Blandizzi C, Pacher P, Hasko G. Immunity, inflammation and cancer: a leading role for adenosine. Nat Rev Cancer 2013;13:842-57.
37
Biber K, Klotz KN, Berger M, Gebicke-Harter PJ, van Calker D. Adenosine A1 receptor-mediated activation of phospholipase C in cultured astrocytes depends on the level of receptor expression. J Neurosci 1997;17:4956-64.
38
Sebastião AM, Ribeiro JA. Adenosine receptors and the central nervous system. Handb Exp Pharmacol 2009;471-534.
39
Koupenova M, Ravid K. Adenosine, adenosine receptors and their role in glucose homeostasis and lipid metabolism. J Cell Physiol 2013. doi: 10.1002/jcp.24352.
40
Ciruela F, Fernández-Dueñas V, Llorente J, Borroto-Escuela D, Cuffí ML, Carbonell L, Sánchez S, Agnati LF, Fuxe K, Tasca CI. G protein-coupled receptor oligomerization and brain integration: focus on adenosinergic transmission. Brain Res 2012;1476:86-95.
41
Fredholm BB, AP IJ, Jacobson KA, Klotz KN, Linden J. International Union of Pharmacology. XXV. Nomenclature and classification of adenosine receptors. Pharmacol Rev 2001;53:527-52.
42
Basheer R, Strecker RE, Thakkar MM, McCarley RW. Adenosine and sleep-wake regulation. Prog Neurobiol 2004;73:379-96.
43
Boison D, Aronica E. Comorbidities in Neurology: Is adenosine the common link? Neuropharmacology 2015;97:18-34.
44
Rainnie DG, Grunze HC, McCarley RW, Greene RW. Adenosine inhibition of mesopontine cholinergic neurons: implications for EEG arousal. Science 1994;263:689-92.
45
Liu ZW, Gao XB. Adenosine inhibits activity of hypocretin/orexin neurons by the A1 receptor in the lateral hypothalamus: a possible sleep-promoting effect. J Neurophysiol 2007;97:837-48.
46
Morairty S, Rainnie D, McCarley R, Greene R. Disinhibition of ventrolateral preoptic area sleep-active neurons by adenosine: a new mechanism for sleep promotion. Neuroscience 2004;123:451-7.
47
Chamberlin NL, Arrigoni E, Chou TC, Scammell TE, Greene RW, Saper CB. Effects of adenosine on gabaergic synaptic inputs to identified ventrolateral preoptic neurons. Neuroscience 2003;119:913-8.
48
Satoh S, Matsumura H, Koike N, Tokunaga Y, Maeda T, Hayaishi O. Region-dependent difference in the sleep-promoting potency of an adenosine A2A receptor agonist. Eur J Neurosci 1999;11:1587-97.
49
Hohoff C, Garibotto V, Elmenhorst D, Baffa A, Kroll T, Hoffmann A, Schwarte K, Zhang W, Arolt V, Deckert J, Bauer A. Association of adenosine receptor gene polymorphisms and in vivo adenosine A1 receptor binding in the human brain. Neuropsychopharmacology 2014;39:2989-99.
50
Dias RB, Ribeiro JA, Sebastiao AM. Enhancement of AMPA currents and GluR1 membrane expression through PKA-coupled adenosine A2A receptors. Hippocampus 2012;22:276-91.
51
Bannon NM, Zhang P, Ilin V, Chistiakova M, Volgushev M. Modulation of synaptic transmission by adenosine in layer 2/3 of the rat visual cortex in vitro. Neuroscience 2014;260:171-84.
52
Strecker RE, Morairty S, Thakkar MM, Porkka-Heiskanen T, Basheer R, Dauphin LJ, Rainnie DG, Portas CM, Greene RW, McCarley RW. Adenosinergic modulation of basal forebrain and preoptic/anterior hypothalamic neuronal activity in the control of behavioral state. Behav Brain Res 2000;115:183-204.
53
Murillo-Rodriguez E, Blanco-Centurion C, Gerashchenko D, Salin-Pascual RJ, Shiromani PJ. The diurnal rhythm of adenosine levels in the basal forebrain of young and old rats. Neuroscience 2004;123:361-70.
54
Wigren HK, Schepens M, Matto V, Stenberg D, Porkka-Heiskanen T. Glutamatergic stimulation of the basal forebrain elevates extracellular adenosine and increases the subsequent sleep. Neuroscience 2007;147:811-23.
55
Alam MN, Szymusiak R, Gong H, King J, McGinty D. Adenosinergic modulation of rat basal forebrain neurons during sleep and waking: neuronal recording with microdialysis. Journal of Physiology-London 1999;521:679-90.
56
Thakkar MM, Delgiacco RA, Strecker RE, McCarley RW. Adenosinergic inhibition of basal forebrain wakefulness-active neurons: a simultaneous unit recording and microdialysis study in freely behaving cats. Neuroscience 2003;122:1107-13.
57
Thakkar MM, Engemann SC, Walsh KM, Sahota PK. Adenosine and the homeostatic control of sleep: effects of A1 receptor blockade in the perifornical lateral hypothalamus on sleep-wakefulness. Neuroscience 2008;153:875-80.
58
Methippara MM, Kumar S, Alam MN, Szymusiak R, McGinty D. Effects on sleep of microdialysis of adenosine A1 and A2a receptor analogs into the lateral preoptic area of rats. Am J Physiol Regul Integr Comp Physiol 2005;289:R1715-23.
59
Porkka-Heiskanen T, Strecker RE, McCarley RW. Brain site-specificity of extracellular adenosine concentration changes during sleep deprivation and spontaneous sleep: an in vivo microdialysis study. Neuroscience 2000;99:507-17.
60
Gass N, Porkka-Heiskanen T, Kalinchuk AV. The role of the basal forebrain adenosine receptors in sleep homeostasis. Neuroreport 2009;20:1013-8.
61
Kalinchuk AV, McCarley RW, Stenberg D, Porkka-Heiskanen T, Basheer R. The role of cholinergic basal forebrain neurons in adenosine-mediated homeostatic control of sleep: lessons from 192 IgG-saporin lesions. Neuroscience 2008;157:238-53.
62
Blanco-Centurion C, Xu M, Murillo-Rodriguez E, Gerashchenko D, Shiromani AM, Salin-Pascual RJ, Hof PR, Shiromani PJ. Adenosine and sleep homeostasis in the Basal forebrain. J Neurosci 2006;26:8092-100.
63
McCormick DA, Williamson A. Convergence and divergence of neurotransmitter action in human cerebral cortex. Proc Natl Acad Sci U S A 1989;86:8098-102.
64
Gerber U, Greene RW, Haas HL, Stevens DR. Characterization of inhibition mediated by adenosine in the hippocampus of the rat in vitro. J Physiol 1989;417:567-78.
65
Basheer R, Arrigoni E, Thatte HS, Greene RW, Ambudkar IS, McCarley RW. Adenosine induces inositol 1,4,5-trisphosphate receptor-mediated mobilization of intracellular calcium stores in basal forebrain cholinergic neurons. J Neurosci 2002;22:7680-6.
66
Arrigoni E, Rainnie DG, McCarley RW, Greene RW. Adenosine-mediated presynaptic modulation of glutamatergic transmission in the laterodorsal tegmentum. J Neurosci 2001;21:1076-85.
67
Brambilla D, Chapman D, Greene R. Adenosine mediation of presynaptic feedback inhibition of glutamate release. Neuron 2005;46:275-83.
68
Morton RA, Davies CH. Regulation of muscarinic acetylcholine receptor-mediated synaptic responses by adenosine receptors in the rat hippocampus. J Physiol 1997;502(Pt 1):75-90.
69
Van Dort CJ, Baghdoyan HA, Lydic R. Adenosine A(1) and A(2A) receptors in mouse prefrontal cortex modulate acetylcholine release and behavioral arousal. J Neurosci 2009;29:871-81.
70
Xia J, Chen F, Ye J, Yan J, Wang H, Duan S, Hu Z. Activity-dependent release of adenosine inhibits the glutamatergic synaptic transmission and plasticity in the hypothalamic hypocretin/orexin neurons. Neuroscience 2009;162:980-8.
71
Marks GA, Birabil CG. Enhancement of rapid eye movement sleep in the rat by cholinergic and adenosinergic agonists infused into the pontine reticular formation. Neuroscience 1998;86:29-37.
72
Oishi Y, Huang ZL, Fredholm BB, Urade Y, Hayaishi O. Adenosine in the tuberomammillary nucleus inhibits the histaminergic system via A1 receptors and promotes non-rapid eye movement sleep. Proc Natl Acad Sci U S A 2008;105:19992-7.
73
Hong ZY, Huang ZL, Qu WM, Eguchi N, Urade Y, Hayaishi O. An adenosine A receptor agonist induces sleep by increasing GABA release in the tuberomammillary nucleus to inhibit histaminergic systems in rats. J Neurochem 2005;92:1542-9.
74
Scammell TE, Gerashchenko DY, Mochizuki T, McCarthy MT, Estabrooke IV, Sears CA, Saper CB, Urade Y, Hayaishi O. An adenosine A2a agonist increases sleep and induces Fos in ventrolateral preoptic neurons. Neuroscience 2001;107:653-63.
75
Gallopin T, Luppi PH, Cauli B, Urade Y, Rossier J, Hayaishi O, Lambolez B, Fort P. The endogenous somnogen adenosine excites a subset of sleep-promoting neurons via A2A receptors in the ventrolateral preoptic nucleus. Neuroscience 2005;134:1377-90.
76
Coleman CG, Baghdoyan HA, Lydic R. Dialysis delivery of an adenosine A2A agonist into the pontine reticular formation of C57BL/6J mouse increases pontine acetylcholine release and sleep. J Neurochem 2006;96:1750-9.
77
Fredholm BB, Battig K, Holmen J, Nehlig A, Zvartau EE. Actions of caffeine in the brain with special reference to factors that contribute to its widespread use. Pharmacol Rev 1999;51:83-133.
78
Elmenhorst D, Meyer PT, Winz OH, Matusch A, Ermert J, Coenen HH, Basheer R, Haas HL, Zilles K, Bauer A. Sleep deprivation increases A1 adenosine receptor binding in the human brain: a positron emission tomography study. J Neurosci 2007;27:2410-5.
79
Huang ZL, Qu WM, Eguchi N, Chen JF, Schwarzschild MA, Fredholm BB, Urade Y, Hayaishi O. Adenosine A2A, but not A1, receptors mediate the arousal effect of caffeine. Nat Neurosci 2005;8:858-9.
80
Okada T, Mochizuki T, Huang ZL, Eguchi N, Sugita Y, Urade Y, Hayaishi O. Dominant localization of adenosine deaminase in leptomeninges and involvement of the enzyme in sleep. Biochem Biophys Res Commun 2003;312:29-34.
81
Radek RJ, Decker MW, Jarvis MF. The adenosine kinase inhibitor ABT-702 augments EEG slow waves in rats. Brain Res 2004;1026:74-83.
82
Rétey JV, Adam M, Honegger E, Khatami R, Luhmann UF, Jung HH, Berger W, Landolt HP. A functional genetic variation of adenosine deaminase affects the duration and intensity of deep sleep in humans. Proc Natl Acad Sci U S A 2005;102:15676-81.
83
Porkka-Heiskanen T, Strecker RE, Thakkar M, Bjorkum AA, Greene RW, McCarley RW. Adenosine: a mediator of the sleep-inducing effects of prolonged wakefulness. Science 1997;276:1265-8.
84
Kalinchuk AV, Porkka-Heiskanen T, McCarley RW, Basheer R. Cholinergic neurons of the basal forebrain mediate biochemical and electrophysiological mechanisms underlying sleep homeostasis. Eur J Neurosci 2015;41:182-95.